A machine-learning algorithm for wind gust prediction

نویسندگان

  • Philip J. Sallis
  • William Claster
  • Sergio Hernández
چکیده

Physical damage to property and crops caused by unanticipated wind gusts is a well understood phenomenon. Predicting its occurrence continues to be a challenge for meteorologists and climatologists. Various approaches to gust occurrence model building have been proposed. The very nature of the event is problematic because of its brief duration following a rapid change of state in wind velocity that immediately precedes it. Events classified as wind gusts have a typical duration of less than 20 s and are often much shorter. The rapidly accelerating wind velocity preceding them is often not apparent until the gust occurs. They come quickly, occur suddenly, and then end as abruptly as they began. Observations of 2000 gust events were made during the research to which this paper refers. These observations indicated a mean interval of 3.2 min between the beginning and end of wind velocity change and a noticeable linear progression in the acceleration pattern. It was also noted that state changes regularly occur, often over only seconds in time. In combination, these factors pose both a sampling and a data interpretation challenge, making reliable prediction difficult. This paper describes some new research undertaken to investigate methods of wind gust measurement and prediction. In particular, a machine-learning approach is taken to determine a satisfactory analytical process and to produce meaningful and useful results. An algorithm for use with real-time climate data collection and analysis is proposed, with a description of its implementation. Real-time data sampling provides input for this study using terrestrial sensor telemetry. Near-ground truth data are recorded independent of geostrophic upper atmosphere conditions. & 2011 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transparent Machine Learning Algorithm Offers Useful Prediction Method for Natural Gas Density

Machine-learning algorithms aid predictions for complex systems with multiple influencing variables. However, many neural-network related algorithms behave as black boxes in terms of revealing how the prediction of each data record is performed. This drawback limits their ability to provide detailed insights concerning the workings of the underlying system, or to relate predictions to specific ...

متن کامل

Intelligent application for Heart disease detection using Hybrid Optimization algorithm

Prediction of heart disease is very important because it is one of the causes of death around the world. Moreover, heart disease prediction in the early stage plays a main role in the treatment and recovery disease and reduces costs of diagnosis disease and side effects it. Machine learning algorithms are able to identify an effective pattern for diagnosis and treatment of the disease and ident...

متن کامل

PREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM

The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can so...

متن کامل

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

Machine Learning Algorithm for Prediction of Heavy Metal Contamination in the Groundwater in the Arak Urban Area

This paper attempts to predict heavy metals (Pb, Zn and Cu) in the groundwater from Arak city, using support vector regression model(SVR) by taking major elements (HCO3, SO4) in the groundwater from Arak city. 150 data samples and several models were trained and tested using collected data to determine the optimum model in which each model involved two inputs and three outputs. This SVR model f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers & Geosciences

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2011